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The electric field in a stream of medium with tensor conductivity dependent on the Hall 

effect is analyzed in the region of abrupt change in the external magnetic field. It is 

shown that the pattern of electric current eddies arising in this region, as well as the 

electromagnetic forces and the Joule dissipation of induced currents are essentially de- 
fined by the velocity fields and the physical properties of the moving medium, whose 
parameters (electrical conductance and the Hall effect) in a varying magnetic field can- 

not be generally considered as constant. 
From the mathematical point of view the solution of the input Riemann-Hilbert bound- 

ary value problem reduces by means of analytic extension on the principle of symmetry 
to solving the inhomogeneous Riemann problem with discontinuous coefficients. 

The problem of motion of a conducting medium in the inhomogeneity region of an 
external magnetic field naturally occurs in investigations of phenomena in the end zones 

of magnetohydrodynamic channels at the in- and outlet of the plasma stream in and out 

of the magnetic field. Sutton [l] considered this problem on the assumption of constancy 
of the medium velocity and physical properties. His solution was later used in @] for 
determining distortions of the velocity profile. 

1, let an ionized gas in which anisotropy of conductance is produced by the Hall 

effect move v (U (r, y), v (x, y), 0) in a plane channel 0 < y < h, - CXI < 

<'z < oowith nonconducting walls, and let the external magnetic field H (0, O,,H,((X) 
normal to the direction of flow of gas vary stepwlk from HL (x < 0) toH,,(i>O) for 

~=0,,.0< y < h,while remaining constant in each ofthe half-strips 5 < 0 and.z > 0. 

In a theoretical investigation it is expedient to satisfy an inhomogeneous magnetic 

field by a step-wise function as the idealization of a magnetic field with a high gradi- 
ent. This permits to examine the effects in conditions of sharply defined electric current 

eddies. It also makes possible the derivation of a complete analytic solution for an arbi- 
trary velocity field by the effective methods of the theory of boundary value problems. 
This assumption does not introduce any appreciable error into the results, provided the 

length I along which the magnetic field varies is small (e. g. in qmparison with the 
channel width I< h). The finite value of I makes the current eddies less clearly 
defined and the integral magnetic forces and the Joule dissipation of induced current 
smaller than those in the limit case of E --t 0. 

The following two assumptions are usually made in this class of problems: owing to 
the smallness of the magnetic Reynolds number (R, < 1) , the induced magnetic 

current field in plasma is neglected and the plasma itself is considered to be an incom- 
pressible medium. 

In accordance with these assumptions the input system of equations can for the iso- 
thermic case be written as 
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J% (x9 Y) = & i, (xv y) + R (I-I) HI, (xv Y) - f vH 

E, (2, y) = -&i,bY)- R (HI HL (xv Y) + $ uf? (1.1) 
vXE=O, 0-j = 0, y7.v=0 

where the electrical conduction o (H) and the Hall effect R (Ii), dependent on the 
magnetic field, are determined in terms of compcnents crXJ (H) and uXy (H) of elec- 
trical conduction tensors are expressed by 

o(H) = oxx m + a$ v4 bxu W) 
sx,(H) ’ 

R(H) = 
H [flrxz W + x$ (WI (1 .a 

It .follows from the system of equations (1.1) that in each of the half-strips (0 ( y ( 
,Ch, x<Oand x>O),where Hk = const (k = 1, 2), we can introduce the 

complex electric current 

f(x) =1x(x, Y) - i& (x, Y) (2 = 3:+iy) 

Wemapstrip-co<x<oo,O<y(h 
in plane c = E + itI using function 5 = 
= ch(nz,/h). The half-strips.0 < y ( h, x > 0 
and x < 0 are then represented in the upper 
and lower half-planes, and sections along rays 
q=O, E<-1 and E>l correspondto 
boundarylinesx=Oandx=h. 

By stating the’ boundary value problem in 
the transformation region we obtain an exact 
solution of the problem of fiow of an anisotro- 
pically conducting medium through the com- 
bined cross section 11 = 0, - 1 ( E ( 1 
of two “channels” represented by the two half- 

Fig. 1 planes Im <>O and Img<O inwhich 
Hk = const,while in the separating plane 

itself it changes abruptly (H, # H,). The solution for the strip is obtained by inverse 
transformation 5 + z of the solution derived below. 

Distribution of the field current is found by solving system (1.1) with the following 
boundary conditions: at the cross section of the plasma flow (11 = 0, -_1 < 5 < I) 
the normal component of the current density vector and the tangent component of the 
field tension are continuous, while along the remaining sections of the t -axis (dielec- 
trics) -j,,k = 0, k = I ,2 (in the following subscripts 1 and 2 denote functions in the 
half-planes Im 5 > 0 and Im 6 < 0 , respectively, Fig. 1) 

ini = 0 on AB and CD, . . 

im = 0 on FB .and CE, Ia = jr,29 &I = E,, on BC (1.3) 

Since current eddies exist only in the region adjacent to the magnetic field inhomo- 
geneity, the current vanishes at infinity. To refine the asymptotic conditions at 1’5 +o , 
which is basic to this statement of the boundary value problem, it is necessary to take 
into consideration the obvious integral relationship 
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1 

s hk 6 0) 4 = 0 (1.4) 
-1 

valid in the absence of any external sources of current in the c-plane. 

2. Taking advantage of the problem symmetry, we introduce into our considerations 
two piece-wise holomorphic functions 

YI+ (5) = jl (5) = itI (5, rl) - ij,l (Et rl) for Im 5 >O 

,f0r’ Im 5 <O 

Ys+ (5) = is (5) = ita (E, rl) + iills. (E, *I) for Im5>0 

(2.1) 

for ImL<O 

According to the boundary conditions (1.3) functions Y k ( 5) (k = 1, 2) satisfy rela- 
tionships 

WI+ (5) = - ys+ (O, y1- (5) = - ys- (5) (2.2) 

and can be represented by the integral af the Cauchy kind 

(k=i, 2) (2.3) 

where y (6) = fnk (E). The series expansion of (2.3) in decreasing powers of f with 
relationship-(1.4) &ken into account yields at considerable 1 c 1 for .%rw, (i) the fol- 

lowing expr:k;; = (-1,“-‘[+ + o&j] ;r A = f jsrcr,dE (2.4) 

The boundary conditions rewritten for the complex current parameters, for example, 
in the upper half-plane, become now of the form 

(a, + a,) ju + (s& - a,&) j,,r = T 2, (H, - Hs) along’ LI (LI = BC) 

jXr = 0 along L (La = AB + CD = FB + CE) (2.5) 
where 

gk = C+?kHk = Q (H,) R (H,) HI, (k = 1, 2) (2.6) 

using the piece-wise holomorphic functions Yk (5) defined in (2. l), we reduce the 
Riemann-Hilbert problem (2.5) to the following nonhomogeneous Riemann problem 
with discontinuous coefficients : 

y1+ (9 = - 
01 + a% - i (Q/31 - apa) yr- (5) + 

2Ws¶ (Ih-frHI) v (4) 

01 + 02 + i (a& - aM c [a1 + as + i (@1- a%)1 
along h 

Yl+ (5) = Y1- (E) along La, Y, (5) = -$ + 0 K”) (2.7) 

The general solution of the problem (2.7) is provided by formulaJ3, 4] 

ah (Hl - Hz) x, (5) L 
Yl(t;) = 

s 

v (4) dS 

nci [ 5lf 02 + i (a& - Wz)l x,+ K) (4 - 5) 
(- 1<‘4< 1) (23) 

-1 

here v (E) is a given function at L, which determines the velocity profile, and must 
satisfy the H6lder condition. The form of the canonical function L (c) is established 
by the choice of the velocity profile along the line of the magnetic field discontinuity. 
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2y varying u (E) the complete set of solutions admitted by the Riemann problem (2.7) 
and comprised in (2.3) can be divided into classes depending on the fulfilment of certain 
integral conditions satisfied by function v (E) along L; or, in the terminology of bound- 
ary value problems, on the Riemann problem index. Omitting intermediate computations, 
we present the final result: 

1) The solution bounded in the vicinity of wall ABF and un- 
bounded in the vicinity of wall DCE (solution with’ zero index 
x = 0). In this case the condition imposed on v (E), ,and the form of the canonical 
function XB (5) are defined by formulas 

1 

s v (F;)(i + t)-“‘-’ (1 - E)“” di = 0, xB (5) = (6 + Q’I~+~ (F, _ 1)-‘/a-c (2_g) 

-1 

Here and in subsequent formulas the canonical function Xv (6) is understood to be that 
branch which is holomorphic in the’c-plane and has positive real values Re -XV” (E) 
on the upper side of L,. 

2) The solution bounded in the vicinity of wall ‘DCE and 
unbounded in the vicinity of wall ABF (x = 0) 
1 

s 
21 (E) (1 + Ip-’ (1 - p+’ at - 0 - 9 xc (g) = (5 + I)-““” (E - ip-’ (2.11) 

-1 

3) The solution bounded in the vicinity of the two wallsSABF 
and DCE (negative index .x- --l)lThe law of variation of v(E) satisfies in 
this case the integral relationships 

1 

s v (E) u+ EP (1 - E)-v* d& = 0 
-1 

5 v (5) & (1 + p-’ (1 - p+” d& = 0 (2.12) 
-1 

the first of which is clearly the sum of Integral conditions (2.9) and (2.11). 
The canonical function is given by formula 

X*n (&) = (6 + 1)‘/“’ (t - 1)‘/” (2.13) 

4) The solution unbounded in the vicinity of the two walls 
ABF and DCE (x = 1). If v (E) does not satisfy along Li any of the conditions 
defined by (2.9) and (2.11) or to system (2.12). then in formula (2.3) we have 

XV (5) = x0 (5) * x0 (5) = (6 + ip (g - ip-* (2.14) 

8. let us now apply the general theory of field calculation to the problem of entry 
of a conducting medium into a magnetic field for three characteristic velocity profiles 
(Fig. 1) : 

v- = v = const, D, = +(I -EY, u* = WE (1 - E’) (3-i) 
The choice of this kind of relationships, generally calculated on the basis of viscous, 

perfect, and other properties of the moving medium, is dictated bv considerations of the 
analysis of current eddies behavior at varying velocity patterns, when the plasma flow 
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rate Q through the entire channel cross section at v-and u, and through the channel 
half-sections at u,is the same 

Q-=Q--.=Qz= 5 v_(%)d%= j; v_(%)+=~u=(%)d% (3.2) 
-1 -1 0 

In the case of an alternating profile of velocity us the total flow rate across section BC 
is zero, and we have in essence a velocity vortex in the inhomogeneity none of the mag- 
netic field. 

A direct test of integral conditions (2.9). (2.11) and (2.12) for the relationships (3.1) 

defining u (E) will readily show that the general solution corresponds to the class of 
solutions (2.14) with singularities at the channel walls. 

Using the Cauchy theorem on residues and the formulas of Sokhotskii-Plemel. we 
obtain for the complex current j’( 5) = js (E, q) - ijn (E, r~) and for the normal and 
tangent components of current along the discontinuity line of the magnetic field the 

following expressions : 

a) for.u_ = V = conat. 

i_(L)=A(sb,Hk, IW+f_(WW)l~ f-(5)=2a---- (3.3) 

jE-(%) = A(ak, Hk, V)[l - sind- (%) X'(%)l 
in-(%) = A(a,, Hk, V)cosM-(%)X' (%) 

b) for U- = 3/zv (1 - %z) 

i- (5) = 3/aA (h 6 v) 11 - G2 + f- (5) X0 (5)l 

i+ (E) = 3/aA (Sk, Hk, V) 11 - %2 - sin M- (E) X’ (%)I 

in- (%) = 3/2A (Sk, Hk, v) COS ae x’ (f) 

f_ (5) = C3 - 2ec2 + (2e2 - “/,) g - 4/3 e3 + 7/3e 

c) for v = SV% (1 - %2) 

(3.4) 

i&)=8A@,,&c, V)[5(1-5)+f2:(5)Xo(5)1 
f;Z (5) = 5” - 2eG3 + (2e2 - 3/2) 6” + (7/3 e - 4/se3) g + a/Se4 - 6/3e2 + 3/~ (3.5) 

jE= (%) = 8A (Sk, Hk, v) [% (1 - %)a - sin nef= (%) x’ (%)I 

jlliI (5) = 86 (akr Hk, v) cos fief* (%) x’ (5) 

The following notation is used in formulas (3.3)-(3.5) : 

A (5k* Hk, v) = olG;\~;a~’ , X’ (%) = (1 + %)-‘Lt’ (1 - %)--“z--L (3.6) 

Cne property common to all solutions independent of the form of functions. V (%), 

should be noted. If relationship 
a2e1 - (JlP2 = 0 (3.7) 

which in accordance with (2.6) may be written in the form 

R, (H)H, = R2 VW2 (3.8) 
is satisfied, then E = 0 and the current distribution is of the same form as in the case 

of scalar conduction. The physical explanation of this is that the anisotropy of conduc- 
tion is determined by the Hall effect whose intensity depends, in turn, on R (A) and H. 

If relationship (3.6) is satisfied, the Hall effect appears uniformly throughout the plasma 
flow region and the tensor character of conduction is not reflected in the current distri- 
bution. Equality (3.7) or its equivalent equality (3.8) are always present in the analysis 
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of electric fields in media with piece-wise anisotropic conduction p]. 
Relative current densities 

jt* (E) = is (5) / A (o, H, v), in* (8 = L (E) / A (a, K v) 

along the discgntinulty line of the magnetic field -1 < E < 1, q = 0 for U_ (9, 
c- (E) and uz (8 are shown in Figs. 2 - 4 for b = 0, 1, 3;~ and 10,calculated by 
formulas (3.3)-(3.6) on the assumption that 

H = H,, H, 7 0: (3 = u, = (~a fJ = fl, = aR (H)H 
E 3x-l arctg p I/ 2) 

It is seen from Figs, 2 and 3 that the electric field is characterized by the concentra- 
tion of current at the channel walls (with integrable singularities at points B. and c) and 
by the disturbance of the symmetry of current eddies relative to the q-axis for fi # 0. 
With increasing Hall parameter 8 = aR (H)H the centets of current eddies (points 
on the ,&axis at which j,,* (E) = 0) move toward the channel wall. For g ( 10 the 
intensity of currents is higher for nonuniform “viscous” profile of velocity u, (E) while 
for considerable p the current distribution in eddies is approximately the same for both 
U_ (E) and u_ (E). It is interesting to note that in the case of alternating velocity & @J 
two centers of eddy currents are present, one of which moves in the direction of the ?J - 
axis (Fig, 4), while the second remains almost stationary relative to changes of, p. 

4. The integral characteristics - the Joule dissipation and the electromagnetic forces 
of induced currents - provide a clearer. picture of the effects of distortion of the velocity 
profile and of the Hall parameter b on the generation of circulating currents. 

The Joule dissipation Q, in the channel is usually calculated by formula 

Qj=CC$dgd~=~j[j.~+~j(vxH)]d5dl 
. e. 

(4.9 

where the double integral is taken over the whole of the sectioned plane 5’. and the vec- 
tor notation j=aE- uR(El)j x H (4.21 
is used for the generalized Ohm’s law. 

With the use of the Gauss-Ostrogradskii formula we find that the double integral of 
the first term in brackets is zero, and that formula (4.1). after transposition of j‘ and v 
ln the scalar uiple product, reduces to 

Qj = -+jjV(k~ H)Gdq (4.3) 

This shows that the Joule dissipation in a channel with throughout dielectric walls is 
numerically equal to the work of electromagnetic forces (the integmnd represents the 
work of the electromagnetic force along path v), 

Taking into account the differential relationship 

which follows from equations 
8l.c 

-ag- 
ai L- 
ag 

(4.41 

(4.5) 

and, also, the boundary values of j and v along L = L, + L,,, we integrate (4.3) bY 
parts and obtain for calculating Q1two equivalent expressions 
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Fig, 2 Fig, 3 

Fig. 4 
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1 

Qj-+ s 9 (8 ill (8 & 
-1 

Qj+\ 
(4.6) 

cp (8 u (El a . + 
NJ = 5 ITI m 4 

here Q (i) is the force function of current and I# (c) the stream function of velocity. 
For v (&) considered here we have 

‘p-(E) = VE, qp- (E) - s/*vg (1 - ‘/,P)! 9* (E) = 4VP (1 - ‘/*e’) (4.7) 

using the Cauchy theorem on residues and the Sokhotskii-Plemel formulas, we calcu- 
late the integral in the first of formulas (4.6) in its final form [43. For this it is neces- 
sary to take into consideration the expansion of X0 (a into series 

x0 (5) = (5 + p+’ (5 - p- = + (i + + ‘t + + . ..) (4.8) 
where 

R,=2e, R, = 2ea + I/%, R, = 4/3e3 + b/3e, R4 = ‘I# -I- ‘/se= -I- ‘le 

R 5 = ~lr5G + 28 +8s/80e, R, = 4l45ee -l-1110e4 -I- 43911soea -I- 'IIS 
(4.9) 

R, = 8/3r6e7 + 26/& + a171poes + SB1lm 
RB = a/315e8 + alseo + 30111aoe4 -I- 1a4715~1e9 -I- 361~~~ 

(other coefficients R,, p = S, . . . in expansion (4.8) will not be required in further 
caiculatlcm and formulas). 

After several transformations, we obtain fcs the calculation of the Joule dissipation 
the following exact analytical expressions: 

(a) for, v_ = V = const 

Qj_ = 231 -(Rz - 2eR,) (4.10) 

(b) for u, = 3/zV (1 - E”) 

'Qj-=*/2+ I(& - 2eR, + (2e2 -- 9/4) R, + 
-I- (2513~ - O/g’) R, + (‘Ia - 6e2) R, + 

+ (4~3 - 7e) R,] (4.11) 

(c) for VI = SVE (1 - E”) 

Q+ = ‘la51 [ Rs - 2eR, + (2e2 - ‘r2) R, + 
+ (lD/3e - “/se’) R, + (2/& - 17/se2 + 

+ “l/g) R, + (*/sy - 14/s) R, + 
+ (lv382 - 41~84 - 7,) R,I (4.12) 

Fig. 5 The dependence of the Joule dissipation Qj-,, 
Q,_ and Q+ on the Hall parameter g calculated by formulas (4.101-(4.12) and nor- 
malized with respect to o (VH / cj2 is shown in Fig. 5. Functions Q1 decrease mono- 
tonically with increasing g;and at the limit QI_ and Qj_ coincide. This is. app-ntly, 
a general characteristic of electric fields in this kind of problems : at a fixed flow rate 
there is always a sufficiently great ‘kc beyond which, for any ‘v ( f) and independently of 
the velocity profile, Q, is equal to Q, _ , which corresponds to a constant velocity pro- 
file v_ = v = const. 
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We study the perturbation of the unifam stream behind an oblique shock wave that 
simultaneously diffracts with an incident wave. The ‘deformation of the shock 
causes the assignment on its shape of a relation in partial derivatives of the unknown 
pressute parturbation, which determines the formulation of a Hilbert boundary-value 
problem for an analytic function. 

The classical “problem of diffraction of a plane wave” (by a stationary wedge of finite 
opening angle), which was solved in 1933 [l], is complicated by assuming that the wedge 
moves through the gas at supersonic speed. 

The problem was briefly considered earlier by the author @I; an integral of Cauchy 
type was used to construct its solution, It proves to be convenient here to use the gene- 
ralization obtained by the author p] of the solution of a diffraction problem that was 
constructed in [4,5] : on it are based the considerations and calculations of the pressure 
distribution of the wedge surface that are contained in the present paper. 

For the special case of a thin wedge moving at hypersonic speed, when Lighthill’s 
solution can be used, the examination was carried out in [6,7$ Conditions under which 
interaction is realized without diffraction were indicated in [8]; the analysis performed 
in b] was devoted to their small pemsrbations. 

1,. S&,W fir Id. A wedge of finite opening angle p moves with supersonic speed 
w, = &&,a00 in a quiescent ideal gas, forming an attacned oblique shock wave that 
forms an, angle~a~with its symmetry plane. At the instant t = ci it meets the front of 
a weak plane pmssure jump that is propagating through the sanm gas with a speed a00 
equal to the speed of sound and making au angle ~1 with the oblique shock front. The 
resulting motion is self-similar. The magnitude. E of the pressure jump in the incident 
wave, referred. to the pzessure in the quiescent gas, is chosen as the basic small parameter. 

Considerations are carried out in the plane perpendicular to the edge of the wedge, 


